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Introduction

This is an introduction to the foundations of quantum group theory.
Quantum groups or Hopf algebras are an exciting new generalisation of
ordinary groups. They have a rich mathematical structure and numerous
roles in situations where ordinary groups are not adequate. The goal in
this volume is to set out this mathematical structure by developing the
basic properties of quantum groups as objects in their own right; what
quantum groups are conceptually and how to work with them. We will
also give some idea of the meaning of quantum groups for physics. On
the other hand, just as ordinary groups have all sorts of applications in
physics, not one specific application but many, in the same way one finds
that quantum groups have a wide variety of probably unrelated applica-
tions. This diversity is one of the themes in the volume and is a good
reason to focus on quantum groups as mathematical objects.

This book is not a survey; many of the most interesting recent results
in representation theory, applications in conformal field theory and low-
dimensional topology, etc., are not discussed in any detail. In this sense,
there is less material here than in my lecture notes [1]. In place of this
fashionable material, I have developed the pedagogical side of [1], giving
now more details of proofs and solutions to exercises, and in general con-
centrating more on that part of the theory of quantum groups that can
be considered as firmly established. I have also included my more recent
work on braided groups.

This text is addressed primarily to theoretical physicists and mathe-
maticians wishing to begin work on quantum groups. For physicists, I
have tried to give full details and line-by-line proofs of all the basic re-
sults that are needed for research in the field. Also, I have struggled hard
to maintain an informal style so that the essential content is not too ob-
scured by inessential formalism. For mathematicians, I have adopted a
theorem-proof format so that the main results can be understood clearly,
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xil Introduction

and have endeavoured not to say things that are technically false. This
balance between readability and rigour is achieved by taking a completely
algebraic line and not discussing in any depth the equally interesting vari-
ants of quantum groups based on C*-algebras and Hopf-von Neumann or
Kac algebras. In other words, we limit ourselves primarily to the algebraic
theory of quantum groups rather than to the functional-analytic theory.

What is a quantum group? To answer this question, let us first consider
what is a group. There are several answers. The most familiar point of
view about groups is as collections of transformations. Transformations
of a space are assumed invertible, and every closed collection of invert-
ible transformations is, inevitably, a group. This is the role of groups as
symmetries. Quantum groups, too, can act on things. However, now the
transformations are not all invertible. Instead, quantum groups have a
weaker structure, called the antipode S, which provides a nonlocal ‘lin-
earised inverse’. It means that now not individual elements but certain
linear combinations are invertible. Remarkably, this weaker invertibility
is all that is actually used in applications. For example, just as groups
can act on themselves in the adjoint representation (which would appear
to require an inverse), so quantum groups act on themselves in an ad-
joint representation. Likewise, just as every representation of a group has
a conjugate one (provided by the action of the inverse group element),
so every quantum group representation has a conjugate provided by the
antipode.

A second point of view about groups is that their representations have
a tensor product. This is familiar in particle physics. For example, if J,
is an angular momentum operator, then an element AJ, = J, ® 1+1® J,
provides its action on tensor products (this linear addition is characteristic
of ordinary Lie algebras: quantum groups tend to be more complicated).
The tensor product is symmetric, the symmetry being implemented by
the usual transposition of vector spaces. Quantum group representations,
too, have a tensor product. In fact, we will see a theorem that given
any collection of objects which can be identified with vector spaces, com-
patible with the tensor product of vector spaces, we can reconstruct a
quantum group and identify the collection as its representations. So, in
a certain context, this is a complete characterisation. For strict quantum
groups (ones possessing a so-called ‘universal R-matrix’), the tensor prod-
uct of representations is symmetric (just as for representations of groups),
but now only up to isomorphism. This isomorphism is not given by the
usual transposition but by a weaker structure called a quasisymmetry or
‘braiding’ ¥. It is weaker because, in general, U does not obey ¥? = id.
Instead, it provides an action of the braid group rather than of the sym-
metric group. It is this fact that leads to the application of strict quantum
groups in low-dimensional topology.
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These two points of view cover the most well-known settings in which
quantum groups have arisen, namely their connection with quantum in-
verse scattering, exactly solvable lattice models and low-dimensional topol-
ogy. In this context, quantum groups arose as symmetries of quantum
statistical systems, leading to braid group representations in these sys-
tems, as well as in conformal field theories related to their continuum
limit. This theory will obviously take up a substantial part of the vol-
ume, namely Chapters 2—4 and parts of Chapters 7, 8 and 9. Important,
but not the only, examples are the quantum groups U,(g) introduced by
V.G. Drinfeld and M. Jimbo as deformations of the enveloping algebras
of complex simple Lie algebras.

However, Hopf algebras in general have a further unusual property or
raison d’étre quite different from their role as generalised symmetry. This
gives the third and fourth ideas about what a quantum group or Hopf
algebra is. These are connected with their duality or self-duality proper-
ties and are the author’s own reason to be interested in quantum groups.
From this point of view, a Hopf algebra is an algebra for which the dual
linear space of the algebra is also an algebra. The algebra structure on
the dual linear space is expressed in terms of the original algebra A as
a coproduct or comultiplication map A : A — A® A. Supplementing
an algebra by a comultiplication (forming a coalgebra) restores a kind of
input-output symmetry to the system. When A is the algebra of observ-
ables of a classical or quantum system, then the ordinary multiplication
A® A — A corresponds to logical deduction (multiplication of projection
operators in the quantum case, or simply multiplication of the characteris-
tic functions in the classical case, which is intersection of their underlying
sets). By contrast, A allows the reverse operation, to ‘unmultiply’ (co-
multiply). The comultiplication of an element X in A is the sum of all
those things in A® A which could give X when combined according to an
underlying group structure. For example, if X is the coordinate function
on the real line, AX = X ®1 + 1® X expresses linear addition on the
line. The probabilistic interpretation is that X in A is a random vari-
able, while X; = X ®1 and X9 = 1® X are two independent random
variables embedded in A® A, which is the system after two steps in a
random walk. Embedding X in A® A as AX = X; + Xy says precisely
that our total position X after two steps is the sum of the two random
variables X7, Xo. This AX represents all the ways to obtain X after
two steps. Thus, the comultiplication represents ‘induction’ or possibility
rather than deduction. Remarkably, the rules for A are just the same as
the rules for multiplication, with the arrows reversed. This remarkable
way of understanding probability and random walks on groups was one
of the classical reasons for interest in Hopf algebras some years ago. This
work has naturally had a renaissance with the arrival of quantum groups
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en masse. This is the third idea of what a Hopf algebra is, and is the
topic of Chapter 5.

Finally, we must recall that non-Abelian Lie groups are after all the sim-
plest examples of Riemannian geometry with curvature. It is well-known
that to do Riemannian geometry on a manifold M it is often convenient
to work with the algebra of functions A = C(M). For example, a vector
field is a derivation in such algebraic terms. The idea of noncommuta-
tive (algebraic) geometry is that even when this algebra A is made into
a noncommutative one, one can continue to do geometry, perhaps even
Riemannian geometry, provided all our constructions are referred to the
algebra A rather than to any manifold M, which need no longer exist.
This is an old idea, but one that was developed significantly in recent
years by A. Connes and others. If our initial M is phase-space then when
A is quantised it becomes noncommutative in just this way (with non-
commutativity controlled by #). We can still continue to think of it as
like ‘C(M)’, although, in truth, the points in M no longer exist because
the position and momentum coordinates can no longer be measured si-
multaneously. We can still continue to do geometry in this setting. This
is ‘quantum Riemannian geometry’. In very general mathematical terms,
such a point of view can also be taken in all the above contexts, notably
the matrix quantum groups of function algebra type (Chapter 4), where
matrix multiplication can be done in the noncommutative setting, or the
context of quantum random walks. However, let us ask more specifi-
cally about quantum Riemannian geometry. According to our view of Lie
groups, noncocommutative Hopf algebras (i.e. with a noncommutative
comultiplication) are like non-Abelian groups, i.e. they have curvature.
If, at the same time, they are noncommutative as a result of quantisa-
tion, then we have a quantum system combined in a consistent way with
curvature, i.e. models of quantum-gravity. This was the author’s original
motivation for Hopf algebras, and is a fourth raison d’étre for them.

Specifically, it was investigated (by the author) under what conditions
the quantum algebra of observables of a particle on a homogeneous space
is, in fact, a Hopf algebra. It turns out that it is sufficient for the homo-
geneous metric to obey a second order ‘Einstein’ equation. Solving this,
one finds a large class of noncommutative and noncocommutative Hopf
algebras related to group factorisations — quite different and independent
from those of Drinfeld, Jimbo, et al. While not connected with braiding,
they are characterised instead by a remarkable self-duality property: the
dual Hopf (von Neumann) algebra is of just the same type with the roles
of position and momentum interchanged. It corresponds to the quantum
particle moving on a dual or ‘mirror’ homogeneous space. We will see this
in Chapter 6.

In this setting, Hopf algebra duality takes a very cancrete form as a
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symmetry between quantum observables and quantum states. The dual
Hopf algebra is built on A*, i.e. the algebra of observables of the dual sys-
tem is the algebra of states (induced by the comultiplication A) in terms
of the original quantum system A. If a is in A (a quantum observable)
and ¢ in A* (a quantum state) then ¢(a) (the expectation value of a in
state ¢) is interpreted in the dual system as a(¢) (the expectation value
of ¢ in state a from the dual point of view). From this point of view,
geometry, in the form of the simplest models of curvature in phase-space,
is the dual of quantisation. The noncommutativity of quantisation is mir-
rored in these models by the noncommutativity of covariant derivatives in
Riemannian geometry, expressed Hopf algebraically as noncommutativity
of A. Thus Hopf algebras provide a unique setting for the unification
of quantum mechanics and gravity, in which they appear as the same
structure but in dual form; one on the algebra of observables and the
other in the algebra of states. It should be appreciated that Hopf alge-
bras provide in this way an example of a general phenomenon: the dual
relationship between quantum theory (as an outgrowth of arithmetics and
intuitionistic logic) and geometry. In maintaining this duality, our notion
of Riemannian geometry must itself be enlarged to the noncommutative
geometric setting, i.e. the gravitational field is ‘quantised’, albeit not in
a very conventional sense.

As a concrete demonstration of these ideas, it turns out that a dif-
ferentiable quantum dynamical system of a particle on a line is a Hopf
algebra of self-dual type if and only if the particle moves in something like
the background of a black-hole type metric. This approach to quantum-
gravity or consistent physics at the Planck scale is one of the themes of
Chapter 6 from a physical point of view. Of course, models of this type
are quite simple, just as Lie groups are only the simplest Riemannian
manifolds. The duality which we describe can be viewed as a generalisa-
tion of usual wave—particle duality at least to such spaces, a generalisation
made possible by quantum groups. It seems likely that it can be taken
further and related also to other duality phenomena running throughout
theoretical physics.

Probably the most remarkable thing about Hopf algebras is that any
one of the four points of view above would be reason enough to invent
Hopf algebras or quantum groups as a generalisation of groups. Yet the
same mathematical structure serves all four simultaneously, and therefore
provides the framework for some truly remarkable conceptual unifications
of these four directions! The comultiplication A leads simultaneously to
a tensor product of representations (as in particle physics), to a convolu-
tion algebra of states expressing random walks, and to quantum-geometric
group structure on phase-space expressing curvature. We do not hope to
discuss all the myriad applications of Hopf algebras and their generalisa-
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Some physical origins of quantum groups.

tions resulting from this. Let us mention only a few important directions.
First, the unification of our third and fourth points of view about quantum
groups surely will suggest a better understanding of the deep connection
between statistical mechanics (or thermodynamics) and gravity already
suggested by Hawking radiation. Indeed, a great deal about entropy, time-
reversal symmetries in logic and other ideas can be explored by means of
Hopf algebra models, and connected via noncommutative geometry with
gravity.

Secondly, the connections between these subjects and quantum groups
in the deformation theoretic sense may lead to tools for eliminating or
at least regularising the infinities in quantum gravity which occur in the
conventional path-integral point of view. To explain this it should be
mentioned that a lot of work in quantum groups under the heading of the
first and second areas above has been a process of formal g-deformation,
i.e. generalising groups of symmetry by putting in a parameter ¢. There
are powerful existence and uniqueness results coming from the work of
V.G. Drinfeld, and a general formalism of bialgebra deformations due to
M. Gerstenhaber and S.D. Schack. Note that ¢ can have any meaning
depending on the application (and is not usually related to physical h).

In particular, we can introduce g-deformation as a way to regularise
elementary particle quantum field theories, with the usual infinities ex-
pressed as poles 1/(g — 1). Any group symmetries are preserved as
quantum group symmetries. Then we renormalise and set ¢ to 1. There
may be an anomaly, but the final symmetry should still be a quantum
group one. Moreover, as we will see, making a ¢-deformation is much more
systematic and less ad hoc than other forms of regularisation because the
resulting correlation functions, etc. are simply ¢-deformed versions of
their usual expressions, and have similar algebraic properties. For exam-
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ple, exponentials become g-exponentials. This is related to the fact that
differential operators deform to g-difference operators. In this scheme, in-
finities that arise from the small-scale structure of spacetime are literally
controlled by replacing differential operators by finite differences, but in
a more systematic way than simply working in a discrete lattice. This is
surely an important potential application of quantum group technology
under the first and second headings above.

Finally, we can apply such a g-regularisation procedure to the usual ap-
proach for quantum gravity itself. The radical suggestion coming from the
above is that we need not, after all, renormalise, i.e. that the parameter
g can after all be identified with a function of . This means quite simply
that the infinities in the path-integral approach to quantum gravity are a
product of incorrectly using classical geometry inside the path-integral. In
reality the true geometry that we must use is noncommutative geometry,
i.e. already partially quantised. If we use this quantum geometry from the
start then we may not run into unavoidable infinities in quantum gravity.
In some sense, the unifications suggested by Hopf algebras indicate that
corrections due to quantum effects to the small-scale structure of space-
time (or phase-space) are of the nature of replacing differential operators
by certain kinds of finite differences, with comparably nice properties.

In this respect then, Chapters 5 and 6 are central to one set of ap-
plications of Hopf algebras to physics, namely to Planck-scale physics.
Chapter 5 develops the probabilistic interpretation as explained above,
while Chapter 6 summarises results from the author’s Ph.D. thesis about
Planck-scale physics. A number of algebraic aspects of general cross prod-
uct quantisation and extension theory are introduced at the same time,
which are surely useful in a wider context as well.

Chapter 7 returns to the theory of quasitriangular Hopf algebras with
Drinfeld’s quantum double and its generalisations. Chapter 8 gives some
of the semiclassical ideas that led to the quantum groups U,(g). Chap-
ter 9 then proceeds with the formal (category-theoretic) aspects of the
representation theory of quantum groups, focusing on the braiding. Here
a new idea arises, namely the role of quantum groups as generating cat-
egories within which live other algebraic structures that we know and love
(and perhaps want to generalise). This is also due to the author and is de-
veloped further in Chapter 10. We will see that a certain two-dimensional
quantum group Z’/2 has as its category of representations (according to
our second point of view above on quantum groups) the category of super-
vector spaces. But we can go further: a certain n-dimensional quantum
group has as its category of representations the category of anyonic vec-
tor spaces, and so on. Moreover, we can start to generalise ideas familiar
in supersymmetry to these more general settings. We learn some new
things about supersymmetry itself. For example, every Hopf algebra con-
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taining a group-like element of order 2 can be turned (transmuted) into
a super one. Likewise, if order n, it can be transmuted into an anyonic
quantum group. In the reverse direction, every group or quantum group
in such categories (such as super or anyonic) can be bosonised to an or-
dinary quantum group by a process of bosonisation. Thus the category
in which an object lives is actually quite fluid: it can be changed like a
‘change of coordinates’. In physical terms, it means that quantum and
statistical noncommutativity can be interchanged. For example, we need
never work with supergroups provided we do not mind working with (their
bosonised) quantum groups instead. On the other hand, it might be more
natural sometimes to take a quantum system and understand it as the
bosonisation of something simpler. For example, the ordinary Weyl alge-
bra of quantum mechanics (which is a certain peculiar Hopf algebra) is
nothing other than the bosonisation of a braided version of the real line.
Such things as g-difference operators mentioned above are nothing other
than the result of bosonising the obvious braided differential operators.
Thus, just as quantisation can give braided structures, braidings can give
quantum ones.

We can take this point of view to its logical conclusion and view ev-
ery quantum group in its braided category of representations. All of its
quantum aspect now appears in the braiding ¥ in the category. What
is left, the resulting ‘braided group’, is braided commutative and braided
cocommutative, i.e. appears more like a (braided) Abelian group. This
leads to a number of new results for quantum groups by thinking about
them in this way. Braided groups in general also provide a new systematic
approach to ¢-deformation starting from the (braided) addition law on ¢-
deformed R™. This includes natural g-deformed Euclidean and Minkowski
spaces. One of the goals of this volume is to lead up to this theory of
braided groups. We will be able to cover in this final Chapter 10 only
the basic definitions and ideas of this braided approach to the theory of
quantum groups and g-deformation. The theory of braided groups is due
to the author and collaborators.

It is hoped that the further theory of braided groups, as well as the
more advanced theory of quantum groups and quantum geometry, will be
developed in a sequel to the present volume. Important topics which must
await this sequel are: the axiomatic theory of differential graded algebras
and bicovariant differentials on quantum groups, quantum group gauge
theory [2], the general theory of braided groups 3, 4] and braided-Lie alge-
bras [5], and applications to the g-regularisation of quantum field theory.
Other major omissions are the general abstract deformation theory and
star products, the advanced theory of the quantum Weyl group and the
canonical or crystal basis, and the advanced theory of U,(g) at roots of
unity and its connections with Kac-Moody algebras and conformal field
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theory.

I will try to mention some of these further topics and also give the
briefest of historical discussions in the ‘Notes’ sections at the end of each
chapter. My aim in the volume, however, is to give a systematic and
pedagogical development rather than a historical one. Moreover, it is
inevitable that I have emphasised the points of view developed in my
own research work, particularly in the later chapters. Let me apologise
therefore in advance for the brevity and, no doubt, incompleteness of
these Notes at the end of each chapter. A full discussion of all points of
interest would surely be a text in itself.

Finally, it is a pleasure to thank all the friends, colleagues and students
who have helped with readings of the manuscript. Prizes go to Arkady
Berenstein, Arthur Greenspoon and Konstanze Rietsch for special efforts.
The cover design is by the author.

Pembroke College, Cambridge, England



